Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
U511(tt, V1, V2) → ACTIVATE(V2)
ISNELIST(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U221(tt, V2) → U231(isList(activate(V2)))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ISQID(activate(V))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
ACTIVATE(n__o) → O
U611(tt, V) → U621(isQid(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
U611(tt, V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
__1(__(X, Y), Z) → __1(Y, Z)
U311(tt, V) → U321(isQid(activate(V)))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__nil) → NIL
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1, V2) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__i) → I
ACTIVATE(n__e) → E
U421(tt, V2) → ACTIVATE(V2)
U521(tt, V2) → ACTIVATE(V2)
U211(tt, V1, V2) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U421(tt, V2) → U431(isNeList(activate(V2)))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U311(tt, V) → ISQID(activate(V))
U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U711(tt, V) → U721(isNePal(activate(V)))
__1(__(X, Y), Z) → __1(X, __(Y, Z))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
U511(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ISLIST(activate(V1))
ACTIVATE(n__a) → A
U111(tt, V) → U121(isNeList(activate(V)))
U411(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
U111(tt, V) → ACTIVATE(V)
U521(tt, V2) → ISLIST(activate(V2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__u) → U
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U411(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
U221(tt, V2) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
ISLIST(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
U511(tt, V1, V2) → ACTIVATE(V2)
ISNELIST(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U221(tt, V2) → U231(isList(activate(V2)))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ISQID(activate(V))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
ACTIVATE(n__o) → O
U611(tt, V) → U621(isQid(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
U611(tt, V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
__1(__(X, Y), Z) → __1(Y, Z)
U311(tt, V) → U321(isQid(activate(V)))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__nil) → NIL
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1, V2) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__i) → I
ACTIVATE(n__e) → E
U421(tt, V2) → ACTIVATE(V2)
U521(tt, V2) → ACTIVATE(V2)
U211(tt, V1, V2) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U421(tt, V2) → U431(isNeList(activate(V2)))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U311(tt, V) → ISQID(activate(V))
U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U711(tt, V) → U721(isNePal(activate(V)))
__1(__(X, Y), Z) → __1(X, __(Y, Z))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
U511(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ISLIST(activate(V1))
ACTIVATE(n__a) → A
U111(tt, V) → U121(isNeList(activate(V)))
U411(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
U111(tt, V) → ACTIVATE(V)
U521(tt, V2) → ISLIST(activate(V2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__u) → U
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U411(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
U221(tt, V2) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
ISLIST(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 41 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( i ) =
/0\
\0/

M( n__u ) =
/0\
\0/

M( __(x1, x2) ) =
/1\
\1/
+
/11\
\11/
·x1+
/10\
\01/
·x2

M( n__i ) =
/0\
\0/

M( activate(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( n__nil ) =
/0\
\0/

M( and(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\01/
·x2

M( U71(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\01/
·x2

M( n__a ) =
/1\
\0/

M( tt ) =
/0\
\0/

M( isPalListKind(x1) ) =
/1\
\0/
+
/10\
\00/
·x1

M( U72(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( nil ) =
/0\
\0/

M( a ) =
/1\
\0/

M( n__isPal(x1) ) =
/0\
\0/
+
/11\
\01/
·x1

M( e ) =
/0\
\0/

M( n__e ) =
/0\
\0/

M( isNePal(x1) ) =
/0\
\0/
+
/11\
\11/
·x1

M( n____(x1, x2) ) =
/1\
\1/
+
/11\
\11/
·x1+
/10\
\01/
·x2

M( o ) =
/0\
\0/

M( isQid(x1) ) =
/0\
\0/
+
/10\
\10/
·x1

M( U62(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( n__and(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\01/
·x2

M( isPal(x1) ) =
/0\
\0/
+
/11\
\01/
·x1

M( n__o ) =
/0\
\0/

M( U61(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/01\
\01/
·x2

M( u ) =
/0\
\0/

M( n__isPalListKind(x1) ) =
/1\
\0/
+
/10\
\00/
·x1

Tuple symbols:
M( ISPAL(x1) ) = 0+
[1,1]
·x1

M( AND(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( ISPALLISTKIND(x1) ) = 0+
[1,0]
·x1

M( U611(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( U711(x1, x2) ) = 0+
[0,0]
·x1+
[1,1]
·x2

M( ACTIVATE(x1) ) = 0+
[1,0]
·x1

M( ISNEPAL(x1) ) = 0+
[1,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isQid(n__o) → tt
isQid(n__i) → tt
niln__nil
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isPalListKind(n__u) → tt
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ACTIVATE(V)
ISNEPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U711(tt, V) → ACTIVATE(V)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
Used ordering: Polynomial interpretation [25]:

POL(ACTIVATE(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNEPAL(x1)) = 1 + x1   
POL(ISPAL(x1)) = 1 + x1   
POL(ISPALLISTKIND(x1)) = 1 + x1   
POL(U61(x1, x2)) = 0   
POL(U611(x1, x2)) = x2   
POL(U62(x1)) = 0   
POL(U71(x1, x2)) = 1 + x2   
POL(U711(x1, x2)) = 1 + x2   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 1   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__a) = 1   
POL(n__and(x1, x2)) = x1 + x2   
POL(n__e) = 1   
POL(n__i) = 1   
POL(n__isPal(x1)) = 1 + x1   
POL(n__isPalListKind(x1)) = 0   
POL(n__nil) = 0   
POL(n__o) = 1   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [17] were oriented:

activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isQid(n__o) → tt
isQid(n__i) → tt
niln__nil
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isPalListKind(n__u) → tt
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U711(tt, V) → ISNEPAL(activate(V))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → ISPALLISTKIND(activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNEPAL(V) → ISPALLISTKIND(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

U221(tt, V2) → ISLIST(activate(V2))
U511(tt, V1, V2) → ISNELIST(activate(V1))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U111(tt, V) → ISNELIST(activate(V))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U511(tt, V1, V2) → ISNELIST(activate(V1))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U421(tt, V2) → ISNELIST(activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
The remaining pairs can at least be oriented weakly.

U221(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U111(tt, V) → ISNELIST(activate(V))
U521(tt, V2) → ISLIST(activate(V2))
Used ordering: Polynomial interpretation [25]:

POL(ISLIST(x1)) = 1 + x1   
POL(ISNELIST(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U111(x1, x2)) = x2   
POL(U12(x1)) = 0   
POL(U21(x1, x2, x3)) = 0   
POL(U211(x1, x2, x3)) = 1 + x2 + x3   
POL(U22(x1, x2)) = 0   
POL(U221(x1, x2)) = 1 + x2   
POL(U23(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1, x2, x3)) = 0   
POL(U411(x1, x2, x3)) = 1 + x2 + x3   
POL(U42(x1, x2)) = 0   
POL(U421(x1, x2)) = 1 + x2   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U511(x1, x2, x3)) = 1 + x2 + x3   
POL(U52(x1, x2)) = 0   
POL(U521(x1, x2)) = 1 + x2   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = x2   
POL(U62(x1)) = 0   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 0   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__a) = 0   
POL(n__and(x1, x2)) = x2   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__isPal(x1)) = 0   
POL(n__isPalListKind(x1)) = 0   
POL(n__nil) = 0   
POL(n__o) = 1   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [17] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__u) → tt
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
niln__nil
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U411(tt, V1, V2) → ISLIST(activate(V1))
U221(tt, V2) → ISLIST(activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U111(tt, V) → ISNELIST(activate(V))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 10 less nodes.